Fault Diagnosis of Industrial Machines Using Sensor Signals and Case-based Reasoning
نویسنده
چکیده
Industrial machines sometimes fail to operate as intended. Such failures can be more or less severe depending on the kind of machine and the circumstances of the failure. E.g. the failure of an industrial robot can cause a hold-up of an entire assembly line costing the affected company large amounts of money each minute on hold. Research is rapidly moving forward in the area of artificial intelligence providing methods for efficient fault diagnosis of industrial machines. The nature of fault diagnosis of industrial machines lends itself naturally to case-based reasoning. Case-based reasoning is a method in the discipline of artificial intelligence based on the idea of assembling experience from problems and their solutions as ”cases” for reuse in solving future problems. Cases are stored in a case library, available for retrieval and reuse at any time. By collecting sensor data such as acoustic emission and current measurements from a machine and representing this data as the problem part of a case and consequently representing the diagnosed fault as the solution to this problem, a complete series of the events of a machine failure and its diagnosed fault can be stored in a case for future use. ISSN 1651-4238 ISBN 978-91-86135-32-4 To my family Abstract Industrial machines sometimes fail to operate as intended. Such failures can be more or less severe depending on the kind of machine and the circumstances of the failure. E.g. the failure of an industrial robot can cause a hold-up of an entire assembly line costing the affected company large amounts of money each minute on hold. Research is rapidly moving forward in the area of artificial intelligence providing methods for efficient fault diagnosis of industrial machines. The nature of fault diagnosis of industrial machines lends itself naturally to case-based reasoning. Case-based reasoning is a method in the discipline of artificial intelligence based on the idea of assembling experience from problems and their solutions as ”cases” for reuse in solving future problems. Cases are stored in a case library, available for retrieval and reuse at any time. By collecting sensor data such as acoustic emission and current measurements from a machine and representing this data as the problem part of a case and consequently representing the diagnosed fault as the solution to this problem, a complete series of the events of a machine failure and its diagnosed fault can be stored in a case for future use.Industrial machines sometimes fail to operate as intended. Such failures can be more or less severe depending on the kind of machine and the circumstances of the failure. E.g. the failure of an industrial robot can cause a hold-up of an entire assembly line costing the affected company large amounts of money each minute on hold. Research is rapidly moving forward in the area of artificial intelligence providing methods for efficient fault diagnosis of industrial machines. The nature of fault diagnosis of industrial machines lends itself naturally to case-based reasoning. Case-based reasoning is a method in the discipline of artificial intelligence based on the idea of assembling experience from problems and their solutions as ”cases” for reuse in solving future problems. Cases are stored in a case library, available for retrieval and reuse at any time. By collecting sensor data such as acoustic emission and current measurements from a machine and representing this data as the problem part of a case and consequently representing the diagnosed fault as the solution to this problem, a complete series of the events of a machine failure and its diagnosed fault can be stored in a case for future use. ISSN 1651-4238 ISBN 978-91-86135-32-4 To my family
منابع مشابه
Fault diagnosis in industry using sensor readings and case-based reasoning
bstract. Fault diagnosis of industrial equipments becomes increasingly imrtant for improving the quality of manufacturing and reducing the cost for oduct testing. Developing a fast and reliable diagnosis system presents a allenge issue in many complex industrial scenarios. The major difficulties erein arise from contaminated sensor readings caused by heavy background ise as well as the unavaila...
متن کاملCase-Based Reasoning Supports Fault Diagnosis Using Sensor Information
Fault diagnosis and prognosis of industrial equipment become increasingly important for improving the quality of manufacturing and reducing the cost for product testing. This paper advocates that computer-based diagnosis systems can be built based on sensor information and by using case-based reasoning methodology. The intelligent signal analysis methods are outlined in this context. We then ex...
متن کاملAn LPV Approach to Sensor Fault Diagnosis of Robotic Arm
One of the major challenges in robotic arms is to diagnosis sensor fault. To address this challenge, this paper presents an LPV approach. Initially, the dynamics of a two-link manipulator is modelled with a polytopic linear parameter varying structure and then by using a descriptor system approach and a robust design of a suitable unknown input observer by means of pole placement method along w...
متن کاملFault diagnosis in a distillation column using a support vector machine based classifier
Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...
متن کاملDevelopment of hardware system using temperature and vibration maintenance models integration concepts for conventional machines monitoring: a case study
This article describes the integration of temperature and vibration models for maintenance monitoring of conventional machinery parts in which their optimal and best functionalities are affected by abnormal changes in temperature and vibration values thereby resulting in machine failures, machines breakdown, poor quality of products, inability to meeting customers’ demand, poor inventory contro...
متن کامل